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ON A SOLUTION OF THE NOiNLIIMM.R DIFFERENTIAL EQUATION FOR TRANSONIC FLOW “
PAST A W.4VE-SHAPED WALL ‘

By CARL IQPL.LS

SUNI>IARY

T[Le Prandt[-Busemann small-perturbation mdtwd is utilized
to ohta itt the -$OM of a compressible $-aid past an infinitely
long ware-shap(d wall. U-hcri the essential asswmpt<on for
transonicjo?.c (that a[l .~ffICh numbers in fh< region OfJ~@?/)are
nearly u.nityj is introduced, the expression for the celocity pote n-
tial takes fhe form of a potwr- series in the transonic similarity
parameter. On the bwis of this jorrn of the solution, art attempt
is made to solve the nonlinear difierenfial equation for tra.nsonic
17w past th~ wary wall, The analysis ufilizal ezh ibifa clearly
th~ di@cultie.s inh~rcnt in nonlinear-j’fow problems. The inces-
tigativn has nererthe[esg been rigorously carried to the point
where the cpiestion of the e.ris~cnce or nonem”stence of a mired
pofe ritialjuw free of discontinui~ies can be settled by the beharior
~),fa singk powr series in the transonic similarity parameter.
The calculation of the coefirien.ts of this dominant pouw series
hw been reduced to a routirie computing problem by means of
recursion formulas resulting from the tsolution of the di~er<ntial
t quation and the boundary condi{ion at the wall. One ofthe
interesting resdts of the a~ialysis i~ the rigorous statement that
the fran sonic similarity parameter must be less t)la n jour-th irds.

INTRODUCTION

Tbe present report considers in detail a notion first ex-
pressed in refermcf’ 1, namely, that the $-on KArmtin transonic
similarity rule is implicitl~- contained in the potential-60 \\-
SOIut ion for high-subsonic flow past a prescribed body. TIw
cakulations are very much simplified by the choice of rec-
ttingukn- Cartesian coordinates as independent variabIes. For
tl~is reason the solid boundary chosen is a tw-o-dimensional
}~avy w-W of small ampIitude extending to in-fkit~- in
l~oth the downstream and upstream directions. The problem
is first treated b~- means of the Prandtl-Busmnann iteration
method forhigh-subsonic undisturbed speeds. On the basis of
this solution ml at tempt is made to solve the nonlinear differen-
t ial equation for transonic flow (corresponding to the linear
Tricomi equation in the hodograph plane) past a wavy w-all.
TIIe analysis utilized exhibits clearl~- the tliEicuIties inherent in
nonlinear-flow problems. The investigation has nevertheless
Iwen rigorousl~- carried to the point where the question of the
wisttmce or none.tistence of a mi~wl potential flow free of
disrontinuities can be seitled by the behavior of a singIe power
series in the tranmnic similmit~- parameter. The calculation

of the coefiieie~ts of this dominank power series has been
reduced to a routine computing problem by means of recur-
sion formulas resulting from the soIution of the differential
equation and the boundary condition at the wavy wall.

The author wishes to acknowledge the inva~uable aid and
advice of Dr. .4. Busemann of the Langley Laboratory during
the writing of this report., especially with regard to the final
section” General Analysis.”

CALCULATION OF HIGH-SUBSONIC FLOW PAST A WAVY
WALL BY 31EANS OF PRANDTL-BUSENIANN

ITERATION NIETHOD

The fundamental nonlinear differential equation for the
potentiaI flow of a compressible fluid can be written as

(%“.’”’2)’4+- )M.’1J’ q5yy-21tf.24x4y 4xY=o
.Cn

(1)
where

c’—. ~ 31.’[1 –(u’+ 0’)]++
~mz (2)

and

+ velocity potential of fiow
x, Y rectangular Cartesian coordinates in plane of flow
u., c fluid wlocity components aIong X- and Y-ask,

respect ively
~, undisturbed stream -wlocity
c locaI speed of sound
cm speed of sound in undisturbed fluid
x= Mach number of undisturbed stream (U/c=)

‘Y ratio of specific heats at constant pressure and con-
stant voIume

Tlie quantities $, .1”, Y, u, and v are nondimensional \vith a
characteristic length 1 as unit of length and the undisturbed
stream -ielocity U as unit of wlocity. The subscripts X and
Yin equation (1) denote partial differentiation \\itl.i respect
to the designated variables.

In order to obtain the PrandtI-Busemann iteration equa-
tions basecI on small perturbations of the undisturbed
stream, the assumption is made that the velocity potential
@can be expamkd in t}ie form

4=.1”+4)1+ -42+-43+- . . . (3)
[ Super:wiesN.kC.4.TX Z&3,“On a Sdurion of the >-onlinemDifferentialEquationfor Transotic F1OWPast a Ware-ShapedWall” by Carl KaPkm, 1951.

22]



222 REPORT 106%—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

For the pllrpose of defining and controlling the iteration
procedure, the function O.+ ~ and its derivatives are re-
garded as small compared with the preceding approxima-
tion #z and its derivatives. From equation (3) and the
fact that for irrotational or potential flow u=+x and u=#Y,

?L=l+&x++Ly+$b3x+ . , .

ml
d=@ly+f#w+@3y+ . . .

When these expressions for u and u are introduced into
equation (1) ! together with the corresponding expression
for C’/cm’given by equation (2), and the po]~e~s and procl-
ucts of @nancl their derivatives are grouped according to the
assumptions of the small-perturbation method, the following
iteration equations for tllc first three approximations result:

k+ @2w=~JJm2[(l + ~)!fwhzz+ dwbl (5)

{
4%. + f#3,, = 2 Jf@ 2 (1+ ~) (khr+ Ad%.) +

[26’(1 +CT)-l]$thz+,,+lz,+

[ 1
(l+U) 2M1+U)-; #lm4Jlz’+;(@’– ~)hdl,’+

(6)

v-here x and y are new indepenclent. variables defined by the
transformation

(7)

Equation (4) is a Laplace equation and equations (5) and
(6) are Poisson equations where the right-haml sides contain
onIy prw-iously determined quantities. These equations
}~ave been treated. recently in reference 2 w-here the particu-
lar integrak of equations (5) and (6) are given in real form.
These part.icuk integrals have been utilized in obtaining
the flow over the }vavy wall. Thus, the equation of tl~e
infinitely long wave-shaped wall (fig. 1) is assumed to be

Y= a cm ax (8)
where
a amplitude of wuve

L wave length

1’

— l’

k-—————A— a

x

I
t
Y

FIGCTRE I. —ll’ave-shaperl wall.

element of length is conveniently chosrn to

The equation of the wavy wfill in nondimen-

The reference

()
he; =$ .

.
sional form and in terms of the variables x and y then kwome.s

y=/% Cos x (9)

whepe, if the thickness coefficient of the wavy lva]l is defined
a

w. t=—
?J2T

~then c=t.

The expression for the velocity potential d, obtuined ]vith
the aid of the particular integrals given in reference 2,
including terms of the order 63and satisfying the boundary
conditions at infinity and at the soIid M-all to the same order
k as follows:

(81- 10a+- 3a~@~e-3’-!-4.u (2-1-a) M=4ye-3’) sin z+

It is of kterest to examine equation (1O) wheu the as-
sumptions of transo~ic-flow theory are introduced. !Ilese
assumptions are cssentiaUy that the undisturbed flow Yeloc-
ity differs only slightlj- from the speed of sound, that the
velocity component normal to the oncoming flow is small
compared with the speed of sound, and that the velocity
component in the direction of the oncoming flow is of k
order of the critical velocity c*. If the undist url-wd stream
is in the direction of the positive x-axis, then the velocity
potential ~, referred to the critical velocity c*, can k written
as (see-reference 1)

(11)
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Tl)e second term ori the right-band side of ttis equation
is the disturbance-velocity potential and implies tbtit terms
involving powers of 1—.11=2 higher than the fit are to be
neglected. The differential equation satisfied by the func-
tion j(z,y) is obtainecl from equation (1) and takes the fol-
lo~~-ingsimplified nonlinear form:

(12)

The baumlary conditions to he fulfilled by f(r,yj are as

(13)

(14)

‘1’[1(1s,it is seen that f is a function of .r, y, and the transonie
sinlilarit~- parameter k only. In the limiting case, Jfe+l
a[ld e~O, k retains its meaning as a transonic similarit~-
parameter.

Xote that in the Prandtl-Busemann iteration procedure
thv order to which the boundary concIition is appIied at the
surface of the profile is the same as the order to which the
iteration has been taken. 11~the transonic case, however,
the surface boundary condition is aI-ways appliwl at the
axis y=o. In particular, this statement of the boundary
condition for transonic flow- is a rigorous one in the limit as
lwth the thickness coefficient and 1—Al[=z simult anw USlJ-
approach zero buk with the same distribution of sIope that
bt’lon~ to the family of profiIes being treated. A ratlwr
complete discussion of this point is contained in reference 3.

Befor~ application of the foregoing considerations to equa-
tion (10), it should be noted that @ in that equation is re-
fvrred to the undisturbed stream ~elocity L’. In order to
introduw c=*m the reference velocity, both @and the rigbt-
lmmi side of equation (10) must be multiplie(l by Z’/c*.

Xow, from equation (2), fith c=e” ancl u’+ ti’=$ it

follows t-hat

lf terms of ord~- the first pomer of 1–31=’ are retained, it
follows from equation (15) thtit

(16)

Then, multipI~-ing the right-band side of equation (10) by

this expression for M*, rep~acing e/19 b> ~+ (1–M.’)k

from equation (1%), ancl neglecting all terms containing
1—.U=Z to a power highw than the first yields the foIIowing
expression for 4:

Comparison of this equation \\-ith equation (11) shows that
the rwdt obtained by me~ns of the PrandtI-Busernmn
iteration method contains implicitly the form of the soIution
required by tramonic-flow- theory. 310reover, the expres-
sion for the function f(r,y), nameIy,

satisfies the nonlinear differential equation (12) and the
bounclmy conditions, equation (13), to the order k’. This
fact suggests a soIution for the flow over the wavy wall, in
the neighborhood of >Iach number unit~-, obtained directly
from equation (12).

SOLUTION OF EQUATION FOR TRANSONIC FLOW’ PAST
A Vi_AVY WALL

Equation (18) suggests the following form for a solution
of the nonlinear cIi_fTerentiaIecluation (12) for transonic flow
subject to the boundary conditions stated in equation (13):

f(x, y)= –Z@ -f,sin nil (19)

where thef%’s are functions of y only. This form forj(.r, Y)
is substituted into equation (12) and repeated use made of
the following identity:
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When the coefficients of the separate hmnonic
are placed equal to zero, the following system
or(linary differential equations for f. results:

terms sin nr
of nonlinear

-fn’’-fn=n+n+ngom(n-m)fmfn-m-

.
~ ~ >0 (m+l)(m+~+l)jm+lfm+n+l

(n.=1,2, . . . ~) (20)

Note that equation (20), with the right-hand side placed
eqwd to zero, has a solution of the form e–’u. An iteration
procedure is then set up in such a manner that the highest
power of k and of e‘L’appearing in the functions. is eqwd to
the number designtiting the iteration step. Thus, the fol-
lowing sets of iteration equations result:

step 1,
j,’’–.f,=o

Step 2,

f(’–4.f2=–; f,’

Stt’p 3,

.f,’’–,=,= –.f,.f2

f2’’-9j,= –3f,f, }
Stvp 4,

f2’’–4j2= –; f,’–3f,f3

f; ’–l6f,=–6f, f,–4f,2 1. .
step 5,

f,” – j, = –flf 2 – 3.f2.f3

f,”- 9f3= – 3f,f ,– 6j].f,

f,”- 2Sf,=–1Ofl.f,–15.f2f3 1

step 6,

f,” –4f,= –; f,’- 3f,f ,– 8f,j4

j:’ — 1G-f,= – 6f ,f ,— 4f,2— 10jlf ,

c,.
f,” –36j,= – 15.f,.fr~ f,’- z4f,.f,

and so fortl~,

(21)

(22)

(23)

(24)

(25)

(26)

Tl~e rigl~t-hand sides of these equations arc kno~-n functions
const rutted from previously det crmined quant i ties in accord
with the iteration proccdurc adopted.

T1lese equations are of the second order, nonhomogeneous
type with constant, coefficients and are read ily integrated,
TIw resulting expressions for j,, jz, ja, fl, f~, Ed f,, with the
houndar~- conditions (13) taken into account) are as follow-s:

(27)

4085“)’lk2’-’’-[m!”:56+l:::::B~’2+24X2562

(
~+~

)(

11L, y+ &+8192
256 288X512 )1

— p yz ~4~-4u_

( 12245 6245 79

‘144X2562–72X2,62 ‘+3><z@2+
. 1

1924; 256 y3+12x2~6 )
y’ IAe-6v+ . . ,

f3=[++&$’:62 (— ~2+ L+ ._~9
)24 72X256 “ Y+

( ~+%k2)y’]k3e-3’-[&~~@+ 32~~56 “+

117 1
–)32X256 ‘Z+256 ‘3 ‘se-”+ “ “ -

f,=
[~+ ( )

390547 L2+ 7 ~ 32947 ~, ~+
1536 720X256’ 384 36X2562

(
k? y’+ $+24x256&+~#;;5< ) (

11

)1

~2 Y3 ~4e-4LI_

(29)

(9&?;;62+57&;56 ‘+96%56 “+

119 25
48X256

ys+
)

4 ~~e-6u+ . . .
48X256 y

.

f5=(&)+& Y+% Y’+& Y’+

25-—
)

~ k5e–5v
24X256 y

+ . . .

j6=(5&)48+&256y+%Y’+& Y’+

15 _ 9
)~ Y4+5120 y’ k’e-@+ . , .

(30)

(31)

@q

IXote that the functions jl, f2, and j3 include the krms of
equation (18), obtained from rquation (10) by allowing the
llach number to approarh unity.

Equations (27) to (32) may be considered to be essentially
the nonlinear sollltion for the flow past, a wavy wall of small
ampIitude for stream LIach numbms in the neighborlwod of
unity in the form of a power series in the transonic similarity
parameter k. k~oreover, this solution is identicaI with the
one obtained by means of the Pral~dtl-Busel~larlrl iteration
equations when Ilach number unity is approached.

CALCULATION OF LOCAL hlACH NUMBER, CRITICAJ.
SIMILARITY PARAIIETER, AND

. PRESSURE COEFFICIENT

GENERAL FORMULAS

From equation (11), when all terms containing 1–M*3
to a power higher than the first are neglected, the expression
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for the fluid velocity referred to the critical speed of sound

(33)

equation (2), the reIation between q and the
number :11 is

(34)

In the transonic approximation, the difference of any lIach
Ilumber in the field of flow from unity is considered a small
quantity. If terms of only the first power of 1—W me
retained, equation (34) yields

*2= 1 + *(3P–1)+. ..

Hence, from equation (33),

(35)

This equation provides a ~means of calculating the critical
value of the transonic similarity parameter; that is, the
value of the parameter k for which M= 1 at the point of
n}aximum -relocity on the boundary.

C4LCULATIOX OF THE CRITIC.4L V.ALUE OF k
For the fimliI.y of wavy walls of small amplitude (incIuding

t~w limiting case of vanishingly small amplitude) with M= 1
at z=O and y=O, equation (36) yields the following reIation
for the determination of the critical value of k:

d,f’
(-)132. ,=0=0

(37)
“=0

By means of equation (19) together with the expression
for f, to f, given by equations (27) tO (32), equ~~ion (W

yields the folIow-ing power series, exact to seven terms, for
the determination of the critical value of k for the family
of jt-avy profiles:

(38)

The procedure adopted in order to estimate the critical
value of k is as follows: From equation (38) the value of
k can be found for 2, 3, 4, 5, 6, and 7 terms. These values
of k are, respectively, 1, 0.8990, 0.8644, 0.8504, 0.8424, and
().8377. The last. two values indicate the approach to the
asymptotic value of k, that is, the ~-alue of k when the number
of terms in equation (38) is infinite. If the vaIues of i
approach smoothly to the asymptote, the estimated critical
vaiue k= 0.8377 is very nearly correct.

Suppose now that both sides of equation (36) are ditided
by [(y+ 1) e]’1’. Then, since

~= (T+l)e
(1 –M=y’

equation (36) can be writte~ as

1 —M2 __p13!g
[(y+l)e]’/3– (39)

The right-hand side of equation (39) is a function of Z, y,
and the parameter k only and is characteristic of the entire
famiIy of boundary pro fiIes. For the famil~ of \va\-y wails
with the critical value assigned to i, equation (39] evaluated
at the wall becomes

1– M’
[(y +-1) 6]’/’

=1.1253(1—0.8536 COSx—O.0989 COS?X—
0.0299 Cos 3X—O.0122 Cos 4.r-o.oo3s Cos 5x—

0.0017 COS 61) (40)

Tabie I lists the values of
1–Lw

[(7 +1) 6]’/’
for VaIues of r l)e.

tween —r and r and figure 2 shows the corresponding
curve.

CALCUL.LTIOX OF TEiE PRESSURE COEFFICIENT

BernodIi’s theorem for a compressible fluid assumes the
following differential form along a streamline:

(d(p–p=)+; ~iU’d $1–1)=0
/

(41)

where

P pressure in fluid

P density of fluid

!2 speed of fluid
and the subscript ~ denotes the quantity in the undisturbed
fluid. N’ow-, from equation (2) the relation between the
nondimensional speed g/U and the locaI lIach number ~1 is
gi~en by

(42j

In accordance with the assumption of transonic-flo~v theory
that all lIach numbers in the flow differ onIy slightly from
unity, equation (42) becomes

&—l=* [l–JI=’–(l–M’)]+-. .. (43)

where powers of 1—M.2 and 1—.T12higher than the first
have bee~ neglected. Then with the pressure coefficient
defined as

Cp,.v.=p
~T2~P.
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FIGURE 2.—Distribution of
1– ~\f2 and (7’+1)1”

[(y+l)E]’J3
—— cm M,, at the surface for the family of wave-shaped waILq,

~2/3

equation (41 ) takes the following form for transonic flow:

d(:,, sf. =~ d [l– M’-(1-M.3] (44)
y-i-l

.Aftw integration,

(’D,’xg==—~:1 [1–M2-(1-M.7]

or, ~vith the aid of equation (36),

(45)

The right-hanci side of this equation can bc considered to be
the first term in a power-series development, of d,, .Wm in
1–il~cz. In particular, when the local hIach number firsb

attains unity, then ~=0 at z=O, y= O and equation (45)

becomes

(‘n,.Vcp= —*(1 –MC,’) (4 G)

a result valid in the transonic range only. ilgain, if the.
thickness coefficient approaches zero as .110+ 1 and M= 1
fit x= O, y= O, then equation (46) shows that, the slope

(iCp,.hfm
(-l(l-AIm’)

at the critical value .lIm =MC,+l is a constant,

2
in(lependenb of tlw particular family of protXes

–’y+l’
treated. This result is vaIid whether the approach to h! och
number unity is made from tl]e subsonic or supersonic region.

(~+l)lf’
If both sides of equation (45) are multiplied by ~2,8 ,

()w2y’3CP,.WW=–2L-’1+%
.

(47)

right-hand side depends only on r, y, and the
parameter k and is characteristic of the family of boundary
profi~es treated. For tho family of wavy walls with the
critical value of k chosen; equation (47) takes the following
form at the solid surfzce (y= O):

(7+1)’/’
~2[3 CD,MC,=-2.2507 {0.8536 COSx+ O.0989 COS2X+

0.0299 COS3x+0.0122 COS 4z+
0.0038 COS5E+0.0017 COS63)

~48j

Table I lists the values of
(y+l)’/’

~213 ~fl,.vrc, for values of a

betw-een –T and ~ and figure 2 shotvs the corresponding cur~-e.
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1– Ji 2 1
T.%BLE 1.—Y.4LUES OF ——

[(y+l)e]~’ “4XD
‘7 :I;,)b g C., MC, AT

THE SURF.4CE FOR THE FAMILY OF JYAYE-SHAPED ‘T.+LLS
..—
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GENERAL ANALYSIS

;vherr, if p=o, the upper limit of q is n— 1, and, if p#O, the
upper limit of q is 2~+n—2. The four-labeIed coefficients
.4~: are reaI numbers calculated from recursion formulas
obtained from the system of differential equat;ons (20) and
th(’ bounclary condition at the surface of the wary _n_aI1.
The boundary condition at y= ~ is automatically satisfied
bY the form of f.; whereas the boundary condition at the wall

takes the form

(50)

[nserting the expressio~ for j. given b~- equation (49) into
equation (50) yields immediately the following rewdts:

~ (2p+n)A::=P$1 .4;: [n=l,2, . . . m) (51)
p=[)

where, if n = 1, the lower limit of p on the right-hand side is
IInity and, if n# I, the lower limit of p is zero. Mso, if

n=l, the upper limit r of p goes from 1 to co and, if n #I, r
goes from O to ~.

In order to find the recursion formulas for the coefficients
i4; ;, the expression for fn given by equation (49) is sub- .
stituted into the system of differential equations (20). The
calculation is facilitated by thr introduction of the following
notations:

.—1

and

(53)
q=o

where the quantities A=;a arise from the multiplication of

the two infinite series ~ ~F e–2PYand ~ A; e–zPY. Kote
p=a p=o

that the quantities .4m;’ are symmetric with respect to the
upper IabeIs m and n. Then

“f= L%- ’’j3J;2°2°
p=o

(54)

Wheu this expression forfa is substituted into equation (20)
and repeated use is made of the identity

the exponent ia.1terms in y can be eliminated, and the fo!-lom--
ing recursion formulas result:

(p=o;n=2,3, . . . o]
and

4p@ +n)A; -2(2p +?l)(A;)’+ (*P)”=

(55)

1 n–l
4n 22 m(n—nz). ~=. ”-m

1P
——

P —y’n~ 7n[r2+-n7”)wA”;”_%:
m=l m=l

(P=I,2, -. . ~;n=l,2, . . . m) (56)

h’ote that these recursion formulas still contain powe~s of y
and k. Both y and k can be eli-rninated for @en ~-ahles of p
and recursion formulas containing onl~- the coefficients
.%: thus obtained. For exampIe, consider equa.t ion (55) for
-which p=O. By repeated use of the iclentitj’

the following recursion formula is obtained:

—2n(q+l).4QZ, ~-1-(q+- l)(g+2)~;’.~alz ;=

(n=2, S, . . . m;q=0,1,2, . . . (n–2);

7’=0 ,1,2, . . . m) (57)
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where

~n;z=: (q=n–2)
(q#n–2)

,A number of interesting relations can be easily ob tainwl
from this recursion formula< Thus, for g=n–2 and r= O,

~_: ‘-2
2(?I-1).44.11 ~—~ ~~o(n–m–l)(m+l) A::i:: g Am:’ :

(58)

From these numerical values the general form is found to be

,no–2
All :=n(4n_1

Similarly, for g=n—2 and r=l,

III a corresponding manner, more co-replicated expressions
cm be obtained for All ~ when r=2, 3, . . . .

Z1ote that in the expression for the disturbance-potential
function .~(z,y), infinite series of the type

5$ ~n–lg-nu~n+2 sin ~x ~n~l :
n=l

occur. The ratio of the (n+ I)st and n th terms is

In order for the series to converge, the limit. of this ratio as
n+ aJ must be less than unity. Thus, if the maximum

()
value of ye-v =: is inserted and z==O, Cauchy’s ratio

test yields

(59)

Other infinite series occm-in tl~e expression for.j(z,y) which
di~-erge for values of the transonic simihwity pm-meter i
considerably Iess than 4. Thus, consider the recursion
equation (57) ancl taIie q=O and r=O. Then

--2aA::+2r;*4:=

—$n :&TL+l)(n-m-l) Ami P: A-T-’:

Mso from equation (57),

. . . . .

The following relations are obtained from the supplementary
equations (51):

From these relations: together with We ones listed in cquti-
tion (58),

. . . . .
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and lead to the general rule

*o=:3~–5}
-10 (n=2, 3, . . . m) (60)~i!4n–i

From equation (51j, n.% ~=A~ ~; therefore,

.4.0= {372-5)
00 (n=2, 3, . . . ~) (61)~n!4a–1

where, by definition,

{3n–5)=lx4 xixlox13x . . - X(3?2-5)

In the expression for the local IIach number in the field of
flow given by equation (36), the expression 2Jf@ occurs.

This e..pression, with z= O, contains infinite series of the
typt!

F=~ nk’e-*w.4:: (62)
n=l

and

G=g nk’e-’uA~: (63)
n=2

If the maximum ~-alue of e-x~(= 1) and the expressions giwn
by equations (60) and (61) are inserted, the C’auchy ratio

test sho~rs that. both series converge for k<;. In particular,

the series expression for F evaIuated at the surface (y=O)
can he expressed in closed form. Thus,

The graph of F agaimt L is a semicubical parabola with the

cusp point at k=: and ~=2. With the restriction that the

transonie similarity parameter k be positi~e and that one
and onl~- one value of k correspond to a gi-i-en wdue of f’,
the permissible values of k and F are confined to the part
of the parat)ola lying between the origin (O,0) and the apex
(4/3,2). ‘Me pow-er-series expression for G ewduated at
the surface can also be expressed in closed form; namely,

This expression, together with the one for F, shows clearly
that. the parameter k cannot be equal to but must be less than
four-thirds.

~ close examination of the recursion formulas (55) and
(56) discloses the important fact that each one of the mani-
fold of po~ver series in k that appear in the functions jx can

be expressed in terms of the members of a single dominant
set of power series. T@ dominant set com%istsof one pom-er
series in k from each ~m, namely, the one multiplied by e–”y
Od>”. ~ccording to equation (49), the nmmbers of the
dominant set of pcm-er series are gi-ren by

SeYera.1 examples are now given to illustrate this impm--
ta.nt observation. Consider the series that. belong to the set

g .4;: fin+” (n=2, 3, . . . ~)
r=o

From the recursion formulas,

. . . . .

Consider now the set

Then

. . . . .

Consicler the set

From the recursion formu]a (.56),

. . . . .
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(n=l,2, ..< m)

s,’

&L3–
256

S,’s,

& S,’s*–: S2S3

The recognition of the existence of a dominant set of power
series in k represents a major reduction in the complexity of
the present problem. Thus, consider the array of infinite

(67)

An examination of equations (27) to (32) shows that the
coefficients & ~ of the series S. appear to be positive and
monotonically decreasing. The series formed from the first
column on the right-hand side. of equation (67) therefore
dominates the series formed from succeeding columns,

h’foreover, the first-column series ~ A; ~ kn has a radius of
n-l

convergence k=+ (see equation (61)). The radii of con-

vergence of the other columnar series therefore are either
equal to or greater than four-thirds, SimilarIy, an examina-
tion of the series S%shows ~hat the coefficients in each column
on the right-hand side of equation (67) aIso seem to form
positive and monotonically decreasing sequences. This be-
havior means that S, is the dominant series of the se~ S. and,

in fact, of the aggregate of power series in k in the e--pression
for the disturbance potential f(r, y).

Consider now the series consisting of the firsb terms of the
odd-labeled series S1, S3, S5, . . . , that is,

~A2n:I : /l’n+’ (68)
n=O

According to the theory of power series (and it can he easily
verified) ~ the radius of convergence of this power series is

still l=;. iTow, a comparison of corresponding terms }vith

the domina.nk series S] shows that

Thus, if in generaI A; ~>~2mO+’~, then the radius of conver-
I gence of_the dominant, series S, can be less than the radius

of convergence of the comparison series given by expression
(68) and tlwreforc may conceivably be equal to the critiral
value k,, =O.8377. hIoreover, it. would then follow that the
original Prandtl-Busema.nn sn~a.ll-perttlrl}atioll method is
valid for purely subsonic flows only. This conclusion would
not invalidate other approaches to the transonic-flow prohlwn
(reference 4).

Unfortunately, the coefficients ~~ ~do not conform to any
a.ppfire.nt or superficial Iaw, but perhaps a careful study of
the recursion formulas (55) and (56) and the suppl~n~t’l~t.ary
or boundary relations (51) will yield a rigorous proof of tho
foregoing statements. Otherwise, it remains to cfilctdate u
reasonable number of the coefilcients ~~ ~. For this pllr-
pose the development of complete recursion fornluIas similar
to equation (57) for the required values of p is worth while.
Thus, for p= 1, the recursion formula. is

4(n+l)A: ,:, –2(n+2)(q+l)J: A,:,,;,

(n=l, z,. ..m; g=o)l,2, . ..n; r=o,l,2, . . .m) (69)

where

&*;l. n=: (g=n-1 or n)
(q#n–lorn)

Finally, it may be of interest to give the general formula
for the Mach number distribution at the surfwe of the wavy
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